Generalization of First Conway-Gordon Theorem

Stephen Forest, Aditya Jambhale, James Longo

Outline

(1) Introduction

- Review
- The Theorems
(2) Proof of Theorem 1
- Idea of Proof
- The Proof
(3) Proof of Theorem 2
- Idea of the Proof
- Preliminaries
- Dealing with $\Gamma_{n} \backslash \Delta\left(v_{0}\right)$
- Preliminaries, Part 2
- Dealing with $\Delta\left(v_{0}\right)$

4 Putting it all together

The Theorem

Theorem (The First Conway-Gordon Theorem)

Every Spatial Embedding of K_{6} contains a non-trivial link

Definition

A Spatial Embedding of a graph G is the image of a injective continuous map $f: G \rightarrow \mathbb{R}^{3}$

Outline of Conway-Gordon Proof

- Define the invariant $\Omega(G)=\sum \mathrm{lk}(\alpha, \beta)(\bmod 2)$, where the sum is over all unordered pairs of Hamiltonian pairs of cycles in G.
- Show that Ω is invariant under isotopy and crossing changes.
- Apply lemma that states that any spatial embedding can be changed to any other using only isotopy and crossing changes.
- Show that $\Omega=1$ for a specific embedding of K_{6}.
- Conclude that $\Omega=1$ for all spatial embeddings of K_{6}, and thus all embeddings of K_{6} contain a nontrivial Hamiltonian link.

Generalizing to K_{n}

Most of the proof does not rely on the graph being K_{6} :

- Define the invariant $\Omega(G)=\sum \mathrm{lk}(\alpha, \beta)(\bmod 2)$, where the sum is over all unordered pairs of Hamiltonian pairs of cycles in G.
- Show that Ω is invariant under isotopy and crossing changes.
- Apply lemma that states that any spatial embedding can be changed to any other using only isotopy and crossing changes.
- Show that $\Omega=1$ for a specific embedding of K_{n}.

The Results of the Generalization

The following theorems related to the generalization of the first Conway-Gordon theorem were given by Kazakov and Korablev:

Theorem

For any two spatial embeddings $G_{n}^{\prime}, G_{n}^{\prime \prime}$ of $K_{n}, n \geq 6$, $\Omega\left(G_{n}^{\prime}\right)=\Omega\left(G_{n}^{\prime \prime}\right)$.

Theorem

Let G_{n} be a spatial embedding of K_{n}. Then $\Omega\left(G_{n}\right)=1$ if $n=6$, and $\Omega\left(G_{n}\right)=0$ if $n>6$.

The First Theorem

Theorem

For any two spatial embeddings $G_{n}^{\prime}, G_{n}^{\prime \prime}$ of $K_{n}, n \geq 6$, $\Omega\left(G_{n}^{\prime}\right)=\Omega\left(G_{n}^{\prime \prime}\right)$.

Where

$$
\Omega(G)=\sum \mathrm{lk}(\alpha, \beta) \quad(\bmod 2)
$$

is the sum is over all unordered pairs of Hamiltonian pairs of cycles in G.

Idea of Proof

This proof relies on the same lemma used in the Conway-Gordon proof:

Lemma

Let G^{\prime} and $G^{\prime \prime}$ be spatial embeddings of the same graph. Then, G^{\prime} can be transformed to $G^{\prime \prime}$ by a series of crossing changes and isotopies

All that remains is to show that Ω is invariant under isotopies and crossing changes.
Since Ω is the sum of linking numbers (which are invariant under isotopy) clearly Ω is invariant under isotopy.

The Proof

Once again, to show that Ω is unaffected over crossing changes. There are three cases, but not really:
(1) The crossing is with and edge and itself
(2) The crossing is between two adjacent edges
(3) The crossing is between two-nonadjacent edges

However, the first two cases can be discarded, as any such crossing change has no effect on any linking number, and thus has no effect on Ω

The Proof, Cont.

Thus, we need only consider when an edge crosses with another, non-adjacent edge, call them A and B. As before, for a given link $L=\left(L_{1}, L_{2}\right), A \subset L_{1}$ and $B \subset L_{2}$, it's linking number changes by 1 after the crossing change. So,

$$
\Omega=\Omega^{\prime}+\sum_{(A, B) \subset\left(L_{1}, L_{2}\right)} 1 \quad(\bmod 2)
$$

And we need noly show that the number of such crossings is even.
To this end, for a given link $\left(L_{1}, L_{2}\right)$, break it down as follows, where a_{1}, a_{2} are the vertices of A, and b_{1}, b_{2} are the vertices of B

$$
\begin{aligned}
& L_{1}=a_{1} \mapsto a_{2} \mapsto v_{1} \mapsto \cdots \mapsto v_{n} \mapsto a_{1} \\
& L_{2}=b_{1} \mapsto b_{2} \mapsto w_{1} \mapsto \cdots \mapsto w_{m} \mapsto b_{1}
\end{aligned}
$$

The Great Finale

$$
\begin{aligned}
& L_{1}=a_{1} \mapsto a_{2} \mapsto v_{1} \mapsto \cdots \mapsto v_{n} \mapsto a_{1} \\
& L_{2}=b_{1} \mapsto b_{2} \mapsto w_{1} \mapsto \cdots \mapsto w_{m} \mapsto b_{1}
\end{aligned}
$$

From this description of L_{1} and L_{2}, define a link

$$
\begin{aligned}
& N_{1}=a_{1} \mapsto a_{2} \mapsto w_{1} \mapsto \cdots \mapsto w_{n} \mapsto a_{1} \\
& N_{2}=b_{1} \mapsto b_{2} \mapsto v_{1} \mapsto \cdots \mapsto v_{m} \mapsto b_{1}
\end{aligned}
$$

This defines a map of order two between links, and because $\left(N_{1}, N_{2}\right) \neq\left(L_{1}, L_{2}\right)$, it is a pairing between the set of links so that $A \subset L_{1}, B \subset L_{2}$. Thus, Ω is invariant over any spatial embedding of K_{n}

Introduction

An Illustrated Diagram

Idea of the Proof

Theorem

Let G_{n} be a spatial embedding of K_{n}. Then $\Omega\left(G_{n}\right)=1$ if $n=6$, and $\Omega\left(G_{n}\right)=0$ if $n>6$.

Because of theorem one, we now know that Ω is independent of spatial embedding, so we need only calculate it for a specific embedding given n. To this end, we chose the following embedding:
(1) Label the vertices of $K_{n} v_{0}, v_{1}, v_{2}, \ldots v_{n-1}$
(2) Place them in \mathbb{R}^{3} so that they project down to a regular n-gon
(3) Fix v_{0}, then place the vertex $v_{i} i$ units lower than v_{0} in the z-direction

Chosen Embedding example

Projected down to \mathbb{R}^{2}, the embedding looks something like this:

In general, two edges, call them $e=\left(v_{i}, v_{j}\right)$ and $f=\left(v_{k}, v_{l}\right), i<j$, $k<l$ intersect iff either $I<j<k<i$ or $j<l<i \leqslant k$.

Introducing Destabilization

For ease of reference, call the set of (Unordered) disjoint pairs of Hamiltonian Cycles in $K_{n} \Gamma_{n}$. We're trying to compute a huge sum, being Ω, so the general strategy will be to partition Γ in to easy to compute chunks.

Definition

$\Delta\left(v_{0}\right)$ is the set of all disjoint Hamiltonian cycles (α, β) so that one of the cycles is a "triangle" containing v_{0}.

Destabilization is going to be defined of $\Gamma_{n} \backslash \Delta\left(v_{0}\right)$.

Destabilization

Let $(\alpha, \beta) \in \Gamma_{n} \backslash \Delta\left(v_{0}\right)$, and WLOG, assume $v_{0} \in \alpha$. Then, α has at least four vertices, two of which are neighboring v_{0}, call them v_{i} and v_{j}. The destabilization of this pair results in a new pair $\left(\alpha^{\prime}, \beta\right)$, where the edges $\left(v_{i}, v_{0}\right)$ and $\left(v_{0}, v_{j}\right)$ are removed and replaced with $\left(v_{i}, v_{j}\right)$

Notice we are not left with a something in Γ_{n}. It is however, within Γ_{n-1} when considering $K_{n} \backslash\left\{v_{0}\right\}$.

Dealing with $\Gamma_{n} \backslash \Delta\left(v_{0}\right)$

Lemma

Let $G_{n} \subset \mathbb{R}^{3}$ be a spatial complete graph with $n \geq 6$ vertices. Then

$$
\sum_{(\alpha, \beta) \in \Gamma_{n} \backslash \Delta\left(v_{0}\right)} \mathrm{Ik}_{2}(\alpha, \beta) \equiv(n+1) \sum_{[(\alpha, \beta)]} \mathrm{Ik}_{2}(\gamma, \delta) \quad(\bmod 2),
$$

Where the last sum is taken over all equivalence classes of Hamiltonian pairs of cycles in $\Gamma_{n} \backslash \Delta\left(v_{0}\right)$ and the pair (γ, δ) is obtained by destabilization of (α, β) along the vertex v_{0}.

Proof of Lemma 1

Let (δ, γ) be the image of some destabilization along the vertex v_{0}. Any element that reduces to it (i.e. elements of the set $[(\alpha, \beta)]$), can be obtained as follows:

There are $n-1$ places to "add back" the vertex v_{0}. For any edge $e \in(\delta, \gamma)$, with end points v_{i} and v_{j}, we can replace it with the two edges $\left(v_{i}, v_{0}\right)$ and $\left(v_{0}, v_{j}\right)$.

The question is now how $\mathrm{lk}_{2}\left(\alpha^{\prime}, \beta^{\prime}\right)$ and $\mathrm{lk}_{2}(\delta, \gamma)$ relate, where $\left(\alpha^{\prime}, \beta^{\prime}\right) \in[(\alpha, \beta)]$

Introduction
Proof of Theorem 1

Proof of Lemma 1, Cont.

With out loss of generality, assume that $v_{0} \in \alpha^{\prime}$, and that the vertex v_{0} was added to δ. Then, $\mathrm{lk}_{2}\left(\alpha^{\prime}, \beta^{\prime}\right)$ is equal to the number of times α^{\prime} crosses over β^{\prime}. This can be broken down into the sum over all the edges, i.e.

$$
\begin{aligned}
\mathrm{Ik}_{2}\left(\alpha^{\prime}, \beta^{\prime}\right) & =\sum_{e \in \alpha^{\prime}} I_{e} \quad(\bmod 2) \\
\mathrm{Ik}_{2}(\delta, \gamma) & =\sum_{e \in \delta} I_{e} \quad(\bmod 2)
\end{aligned}
$$

Where l_{e} stands for the number of crossings between e and β^{\prime}. (Note that $\beta^{\prime}=\gamma$). Now, the only difference in in the summation are what edges are being summed over. δ and α^{\prime} differ only by a triangle with v_{0}, v_{i}, and v_{j} as the vertices.

Proof of Lemma 1, Cont.

From the remarks on the previous slide,

$$
\begin{aligned}
\mathrm{Ik}_{2}\left(\alpha^{\prime}, \beta^{\prime}\right) & =\mathrm{Ik}_{2}\left(\delta, \beta^{\prime}\right)+I_{\left(v_{i}, v_{0}\right)}+I_{\left(v_{0}, v_{j}\right)}-I_{\left(v_{i}, v_{j}\right)} \\
& (\bmod 2) \\
& =\operatorname{Ik}_{2}\left(\delta, \beta^{\prime}\right)+I_{\left(v_{i}, v_{0}\right)}+I_{\left(v_{0}, v_{j}\right)}+I_{\left(v_{i}, v_{j}\right)} \\
& (\bmod 2) \\
& =\mathrm{Ik}_{2}\left(\delta, \beta^{\prime}\right)+\mathrm{Ik}_{2}\left(\Delta_{0 i j} ; \beta^{\prime}\right)(\bmod 2)
\end{aligned}
$$

Now, if we sum over all possible choices of where v_{0} can go, i.e. summing over a particular equivalence class of $[(\alpha, \beta)]$, then we see that each $I_{\left(v_{0}, v_{i}\right)}$ get duplicated, and cancel.

Proof of Lemma 1, Cont.

Next, the $I_{\left(v_{i}, v_{j}\right)}$, once summed over every edge in δ, is simply $\mathrm{Ik}_{2}(\delta, \gamma)$, and once we sum over every in γ, we get another copy of $\mathrm{Ik}_{2}(\delta, \gamma)$. Thus,

$$
\sum_{e} I_{e}=2 \mathrm{lk}_{2}(\delta, \gamma) \quad(\bmod 2)
$$

And

$$
\begin{aligned}
\sum_{(\alpha, \beta) \in \Gamma_{n} \backslash \Delta\left(v_{0}\right)} \mathrm{I}_{2}(\alpha, \beta) & =(n-1) \sum_{[(\alpha, \beta)]} \mathrm{I}_{2}(\gamma, \delta)+2 \sum_{[(\alpha, \beta)]} \mathrm{Ik}_{2}(\gamma, \delta) \\
& =(n+1) \sum_{[(\alpha, \beta)]} \mathrm{l}_{2}(\gamma, \delta)(\bmod 2)
\end{aligned}
$$

as desired.

Symmetry yrtemmyS

We've divided Γ_{n} into $\Gamma_{n} \backslash \Delta\left(v_{0}\right)$ and $\Delta\left(v_{0}\right)$. We're going to further divide $\Delta\left(v_{0}\right)$ into more subsets, using symmetry.

To this end, we introduce a family of functions that maps the vertices of the spatial embedding to the other vertices

$$
\tau_{k}\left(v_{i}\right)= \begin{cases}v_{i}, & i \leq k \\ v_{n-i} & k<i<n-k \\ v_{i} & i \geq n-k\end{cases}
$$

This induces a corresponding map on the edges.

Wait, How was that Symmetry?

Our choice of embedding also plays into this. Each map can be described as keeping the first k and last k vertices in the same places, and reflecting the other vertices over the line through v_{0} and the center of the n-gon.

In particular, τ_{0} is literally the reflection about this line, and it preserves crossings (That are not incident v_{0}): let e, f be edges, with $e=\left(v_{i}, v_{j}\right), i<j$ and $f=\left(v_{k}, v_{l}\right), k<l$.
If they intersect, then either $i<k<j<I$ or $k<i<I<j$. So, $n-I<n-j<n-k<n-i$ or $n-k<n-I<n-i<n-k$, which implies $\tau(e)$ and $\tau(f)$ intersect.

$S t_{\tau_{0}}$ and $S t_{\tau}$

Now, we can define the two following notions: $S t_{\tau} \subset S t_{\tau_{0}} \subset \Delta\left(v_{0}\right)$

Definition

$S t_{\tau_{0}}$ consists of elements $(\alpha, \beta) \in \Delta\left(v_{0}\right)$ so that $\tau_{0}(\alpha)=\alpha$ and $\tau_{0}(\beta)=\beta$

$S t_{\tau}$

Let $(\alpha, \beta) \in S t_{\tau_{0}}$, and assume WLOG that α is the triangle containing v_{0}. Since it is invariant over τ, the other two vertices of the triangle must be v_{k} and v_{n-k}. This means that α is automatically invariant over τ_{k}.

Definition

$S t_{\tau}$ consists of elements $(\alpha, \beta) \in S t_{\tau_{0}}$ so that $\tau_{k}(\beta)=\beta$

Idea of the Proof
Preliminaries
Dealing with $\Gamma_{n} \backslash \Delta\left(v_{0}\right)$
Preliminaries, Part 2
Dealing with $\triangle\left(v_{0}\right)$

$S t_{\tau}$

Dealing with $\Delta\left(v_{0}\right)$

Just as we divided Γ into $\Gamma \backslash \Delta\left(v_{0}\right)$ and $\Delta\left(v_{0}\right)$, our plan for dealing with $\Delta\left(v_{0}\right)$ will be similar: We're going to divide $\Delta\left(v_{0}\right)$ into

$$
\Delta\left(v_{0}\right) \backslash S t_{\tau_{0}}, \quad S t_{\tau_{0}} \backslash S t_{\tau}, \quad \text { and } S t_{\tau}
$$

Since we're calculating things (mod 2), the lack of symmetry in $\Delta\left(v_{0}\right) \backslash S t_{\tau_{0}}$ and $S t_{\tau_{0}} \backslash S t_{\tau}$ will help us pair linking numbers, while the restrictiveness of $S t_{\tau}$ will help us in its case.

Dealing with $\Delta\left(v_{0}\right) \backslash S t_{\tau_{0}}$

Since we are excluding $S t_{\tau_{0}},(\alpha, \beta) \neq\left(\tau_{0}(\alpha), \tau_{0}(\beta)\right)$. Since $\mathrm{Ik}_{2}(\alpha, \beta)=\mathrm{Ik}_{2}\left(\tau_{0}(\alpha), \tau_{0}(\beta)\right)$, their sum is $0(\bmod 2)$.

Thus

$$
\sum_{(\alpha, \beta) \in \Delta\left(v_{0}\right) \backslash S t_{\tau_{0}}} \mathrm{Ik}_{2}(\alpha, \beta)=0 \quad(\bmod 2) .
$$

Dealing with $S t_{\tau_{0}} \backslash S t_{\tau}$

Since we are excluding $S t_{\tau}, \beta \neq \tau_{k}(\beta)$
Since $\mathrm{Ik}_{2}(\alpha, \beta)=\mathrm{Ik}_{2}\left(\tau_{0}(\alpha), \tau_{0}(\beta)\right)$, their sum is $0(\bmod 2)$.

Thus

$$
\sum_{(\alpha, \beta) \in S t_{\tau_{0}} \backslash S t_{\tau}} \mathrm{Ik}_{2}(\alpha, \beta)=0 \quad(\bmod 2) .
$$

Dealing with $S t_{\tau}$

Finally, we must sum up $\mathrm{Ik}_{2}(\alpha, \beta)$ for all (α, β) in $S t_{\tau}$.
First, consider the case where α uses vertices v_{0}, v_{1}, and v_{n-1}.

Clearly $\mathrm{Ik}_{2}(\alpha, \beta)=0$ for any (α, β) in this case.

Dealing with $S t_{\tau}$

Now, consider the other case. Then α uses vertices v_{0}, v_{k}, and v_{n-k} with $k>1$.
Suppose there are no vertices between v_{k} and v_{n-k}.

Clearly $\mathrm{Ik}_{2}(\alpha, \beta)=0$ for any (α, β) in this case as well.

Dealing with $S t_{\tau}$

Now, suppose there are at least 2 vertices between v_{k} and v_{n-k}.

Dealing with $S t_{\tau}$

There must be at least one edge connecting the lower vertices to the upper ones:

Due to τ_{0} symmetry, we can add a second edge:

Dealing with $S t_{\tau}$

Due to τ_{k} symmetry, we can add two more edges:

After this, we have already closed off β. Therefore this is the only (α, β) in $S t_{\tau}$ that has 2 or more vertices between v_{k} and v_{n-k}. And since this (α, β) has $\mathrm{Ik}_{2}(\alpha, \beta)=0$, we can also ignore this case.

Dealing with $S t_{\tau}$

Finally, we have the case where there is exactly 1 vertex between v_{k} and v_{n-k}. For every (α, β) in this case, $\mathrm{Ik}_{2}(\alpha, \beta)=1$.

Now the question is: For each n, how many (α, β) are there of this type?

Dealing with $S t_{\tau}$

Clearly there are zero such (α, β) for any odd n, since in order to have a single point at the bottom of the n-gon, n must be even.

If $n=6$, then there is exactly one such (α, β), shown below:

Dealing with $S t_{\tau}$

Finally, if $n>6$ is even, then after adding the two symmetric edges of β to the bottom vertex there will be at least 2 more vertices that still need to be added to β.

After these remaining vertices are all connected with a symmetric path, there are two ways to connect the two parts of β.
This means that there are an even number of (α, β) in this case.

Idea of the Proof
Preliminaries
Dealing with $\Gamma_{n} \backslash \Delta\left(v_{0}\right)$
Preliminaries, Part 2
Dealing with $\Delta\left(v_{0}\right)$

Dealing with $S t_{\tau}$

Dealing with $S t_{\tau}$

To summarize, there are 4 cases for (α, β) in $S t_{\tau}$:

- α uses v_{0}, v_{1}, and v_{n-1}
- 0 vertices between v_{k} and v_{n-k}
- 2+ vertices between v_{k} and v_{n-k}
- Exactly 1 vertex between v_{k} and v_{n-k}

The sum of linking numbers mod 2 is always zero in the first 3 cases, and for the fourth case, the sum of linking numbers is 1 for $n=6$ and 0 for all $n>6$.

Land Ho! Eternity! Ashore At Last

Combining everything from above, for $n \geq 7$,

$$
\begin{aligned}
\Omega\left(K_{n}\right)= & \sum_{(\alpha, \beta) \in \Gamma_{n}} \mathrm{Ik}_{2}(\alpha, \beta) \quad(\bmod 2) \\
= & \sum_{(\alpha, \beta) \in \Gamma_{n} \backslash \Delta\left(v_{0}\right)} \mathrm{Ik}_{2}(\alpha, \beta)+\sum_{(\alpha, \beta) \in \Delta\left(v_{0}\right) \backslash S t_{\tau_{0}}} \mathrm{Ik}_{2}(\alpha, \beta) \\
& +\sum_{(\alpha, \beta) \in S t_{\tau_{0}} \backslash S t_{\tau}} \mathrm{Ik}_{2}(\alpha, \beta)+\sum_{(\alpha, \beta) \in S t_{\tau}} \mathrm{Ik}_{2}(\alpha, \beta) \quad(\bmod 2) \\
= & (n+1) \sum_{[(\alpha, \beta)]} \mathrm{Ik}_{2}(\gamma, \delta)+0+0+0 \quad(\bmod 2) \\
= & (n+1) \Omega\left(K_{n-1}\right)(\bmod 2)
\end{aligned}
$$

The End

$$
\Omega\left(K_{n}\right)=(n+1) \Omega\left(K_{n-1}\right) \quad(\bmod 2)
$$

For odd $n, n+1=0(\bmod 2)$, so clearly $\Omega\left(K_{n}\right)=0$.
For all even $n>6, \Omega\left(K_{n-1}\right)=0$ since $n-1$ is odd.
Thus $\Omega\left(K_{n}\right)=0$ for all $n>6$, completing the proof.

