Generalization of First Conway-Gordon Theorem

Stephen Forest, Aditya Jambhale, James Longo

Stephen Forest, Aditya Jambhale, James Longo Generalization of First Conway-Gordon Theorem

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

- Introduction
 - Review
 - The Theorems
- Proof of Theorem 1
 - Idea of Proof
 - The Proof
- Proof of Theorem 2
 - Idea of the Proof
 - Preliminaries
 - Dealing with $\Gamma_n \setminus \Delta(v_0)$
 - Preliminaries, Part 2
 - Dealing with $\Delta(v_0)$
- 4 Putting it all together

Review The Theorems

The Theorem

Theorem (The First Conway-Gordon Theorem)

Every Spatial Embedding of K₆ contains a non-trivial link

Definition

A **Spatial Embedding** of a graph *G* is the image of a injective continuous map $f : G \to \mathbb{R}^3$

< ロ > < 同 > < 回 > < 回 >

Review The Theorems

Outline of Conway-Gordon Proof

- Define the invariant Ω(G) = ∑ lk(α, β) (mod 2), where the sum is over all unordered pairs of Hamiltonian pairs of cycles in G.
- Show that $\boldsymbol{\Omega}$ is invariant under isotopy and crossing changes.
- Apply lemma that states that any spatial embedding can be changed to any other using only isotopy and crossing changes.
- Show that $\Omega = 1$ for a specific embedding of K_6 .
- Conclude that $\Omega = 1$ for all spatial embeddings of K_6 , and thus all embeddings of K_6 contain a nontrivial Hamiltonian link.

< ロ > < 同 > < 三 > < 三 > <

Review The Theorems

Generalizing to K_n

Most of the proof does not rely on the graph being K_6 :

- Define the invariant Ω(G) = ∑ lk(α, β) (mod 2), where the sum is over all unordered pairs of Hamiltonian pairs of cycles in G.
- Show that Ω is invariant under isotopy and crossing changes.
- Apply lemma that states that any spatial embedding can be changed to any other using only isotopy and crossing changes.
- Show that $\Omega = 1$ for a specific embedding of K_n .

イロト イポト イヨト イヨト

Review The Theorems

The Results of the Generalization

The following theorems related to the generalization of the first Conway-Gordon theorem were given by Kazakov and Korablev:

Theorem

For any two spatial embeddings G'_n , G''_n of K_n , $n \ge 6$, $\Omega(G'_n) = \Omega(G''_n)$.

Theorem

Let G_n be a spatial embedding of K_n . Then $\Omega(G_n) = 1$ if n = 6, and $\Omega(G_n) = 0$ if n > 6.

イロト イポト イヨト イヨト

э

ldea of Proof The Proof

The First Theorem

Theorem

For any two spatial embeddings G'_n , G''_n of K_n , $n \ge 6$, $\Omega(G'_n) = \Omega(G''_n)$.

Where

$$\Omega(G) = \sum \mathsf{lk}(\alpha, \beta) \pmod{2}$$

is the sum is over all unordered pairs of Hamiltonian pairs of cycles in G.

< ロ > < 同 > < 三 > < 三 >

э

Idea of Proof The Proof

Idea of Proof

This proof relies on the same lemma used in the Conway-Gordon proof:

Lemma

Let G' and G'' be spatial embeddings of the same graph. Then, G' can be transformed to G'' by a series of crossing changes and isotopies

All that remains is to show that Ω is invariant under isotopies and crossing changes.

Since Ω is the sum of linking numbers (which are invariant under isotopy) clearly Ω is invariant under isotopy.

< ロ > < 同 > < 三 > < 三 > <

ldea of Proof The Proof

The Proof

Once again, to show that Ω is unaffected over crossing changes. There are three cases, but not really:

- The crossing is with and edge and itself
- 2 The crossing is between two adjacent edges
- So The crossing is between two-nonadjacent edges

However, the first two cases can be discarded, as any such crossing change has no effect on any linking number, and thus has no effect on Ω

・ 同 ト ・ ヨ ト ・ ヨ ト

Idea of Proof The Proof

The Proof, Cont.

Thus, we need only consider when an edge crosses with another, non-adjacent edge, call them A and B. As before, for a given link $L = (L_1, L_2)$, $A \subset L_1$ and $B \subset L_2$, it's linking number changes by 1 after the crossing change. So,

$$\Omega = \Omega' + \sum_{(A,B) \subset (L_1,L_2)} 1 \pmod{2}$$

And we need noly show that the number of such crossings is even. To this end, for a given link (L_1, L_2) , break it down as follows, where a_1, a_2 are the vertices of A, and b_1, b_2 are the vertices of B

$$L_1 = a_1 \mapsto a_2 \mapsto v_1 \mapsto \cdots \mapsto v_n \mapsto a_1$$
$$L_2 = b_1 \mapsto b_2 \mapsto w_1 \mapsto \cdots \mapsto w_m \mapsto b_1$$

くロ と く 同 と く ヨ と 一

Idea of Proof The Proof

The Great Finale

$$L_1 = a_1 \mapsto a_2 \mapsto v_1 \mapsto \cdots \mapsto v_n \mapsto a_1$$
$$L_2 = b_1 \mapsto b_2 \mapsto w_1 \mapsto \cdots \mapsto w_m \mapsto b_1$$

From this description of L_1 and L_2 , define a link

$$N_1 = a_1 \mapsto a_2 \mapsto w_1 \mapsto \cdots \mapsto w_n \mapsto a_1$$
$$N_2 = b_1 \mapsto b_2 \mapsto v_1 \mapsto \cdots \mapsto v_m \mapsto b_1$$

This defines a map of order two between links, and because $(N_1, N_2) \neq (L_1, L_2)$, it is a pairing between the set of links so that $A \subset L_1, B \subset L_2$. Thus, Ω is invariant over any spatial embedding of K_n

・ 同 ト ・ ヨ ト ・ ヨ ト

Idea of Proof The Proof

An Illustrated Diagram

< ロ > < 回 > < 回 > < 回 > < 回 >

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Idea of the Proof

Theorem

Let G_n be a spatial embedding of K_n . Then $\Omega(G_n) = 1$ if n = 6, and $\Omega(G_n) = 0$ if n > 6.

Because of theorem one, we now know that Ω is independent of spatial embedding, so we need only calculate it for a specific embedding given *n*. To this end, we chose the following embedding:

- **1** Label the vertices of $K_n v_0, v_1, v_2, \ldots, v_{n-1}$
- **2** Place them in \mathbb{R}^3 so that they project down to a regular *n*-gon
- Fix v_0 , then place the vertex v_i *i* units lower than v_0 in the z-direction

< ロ > < 同 > < 三 > < 三 > <

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Chosen Embedding example

Projected down to \mathbb{R}^2 , the embedding looks something like this:

In general, two edges, call them $e = (v_i, v_j)$ and $f = (v_k, v_l)$, i < j, k < l intersect iff either l < j < k < i or $j < l \leq i \leq k$.

Stephen Forest, Aditya Jambhale, James Longo Generalization of First Conway-Gordon Theorem

Idea of the Proof **Preliminaries** Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Introducing Destabilization

For ease of reference, call the set of (Unordered) disjoint pairs of Hamiltonian Cycles in $K_n \Gamma_n$. We're trying to compute a huge sum, being Ω , so the general strategy will be to partition Γ in to easy to compute chunks.

Definition

 $\Delta(v_0)$ is the set of all disjoint Hamiltonian cycles (α, β) so that one of the cycles is a "triangle" containing v_0 .

Destabilization is going to be defined of $\Gamma_n \setminus \Delta(\nu_0)$.

< ロ > < 同 > < 三 > < 三 >

Idea of the Proof **Preliminaries** Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Destabilization

Let $(\alpha, \beta) \in \Gamma_n \setminus \Delta(v_0)$, and WLOG, assume $v_0 \in \alpha$. Then, α has at least four vertices, two of which are neighboring v_0 , call them v_i and v_j . The destabilization of this pair results in a new pair (α', β) , where the edges (v_i, v_0) and (v_0, v_j) are removed and replaced with (v_i, v_j)

Notice we are **not** left with a something in Γ_n . It is however, within Γ_{n-1} when considering $K_n \setminus \{v_0\}$.

Idea of the Proof Preliminaries **Dealing with** $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with $\Gamma_n \setminus \Delta(v_0)$

Lemma

Let $G_n \subset \mathbb{R}^3$ be a spatial complete graph with $n \ge 6$ vertices. Then

$$\sum_{(\alpha,\beta)\in\Gamma_n\setminus\Delta(\mathsf{v}_0)}\mathsf{lk}_2(\alpha,\beta)\equiv(n+1)\sum_{[(\alpha,\beta)]}\mathsf{lk}_2(\gamma,\delta)\pmod{2},$$

Where the last sum is taken over all equivalence classes of Hamiltonian pairs of cycles in $\Gamma_n \setminus \Delta(v_0)$ and the pair (γ, δ) is obtained by destabilization of (α, β) along the vertex v_0 .

くロ と く 同 と く ヨ と 一

Idea of the Proof Preliminaries **Dealing with** $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Proof of Lemma 1

Let (δ, γ) be the image of some destabilization along the vertex v_0 . Any element that reduces to it (i.e. elements of the set $[(\alpha, \beta)]$), can be obtained as follows:

There are n-1 places to "add back" the vertex v_0 . For any edge $e \in (\delta, \gamma)$, with end points v_i and v_j , we can replace it with the two edges (v_i, v_0) and (v_0, v_j) .

The question is now how $lk_2(\alpha', \beta')$ and $lk_2(\delta, \gamma)$ relate, where $(\alpha', \beta') \in [(\alpha, \beta)]$

Idea of the Proof Preliminaries **Dealing with** $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Proof of Lemma 1, Cont.

With out loss of generality, assume that $v_0 \in \alpha'$, and that the vertex v_0 was added to δ . Then, $lk_2(\alpha', \beta')$ is equal to the number of times α' crosses over β' . This can be broken down into the sum over all the edges, i.e.

$${\sf k}_2(lpha',eta') = \sum_{e\inlpha'} I_e \pmod{2}$$

 ${\sf lk}_2(\delta,\gamma) = \sum_{e\in\delta} I_e \pmod{2}$

Where l_e stands for the number of crossings between e and β' . (Note that $\beta' = \gamma$). Now, the only difference in the summation are what edges are being summed over. δ and α' differ only by a triangle with v_0, v_i , and v_j as the vertices.

Idea of the Proof Preliminaries **Dealing with** $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Proof of Lemma 1, Cont.

From the remarks on the previous slide,

$$\begin{aligned} \mathsf{k}_{2}(\alpha',\beta') &= \mathsf{lk}_{2}(\delta,\beta') + \mathit{l}_{(v_{i},v_{0})} + \mathit{l}_{(v_{0},v_{j})} - \mathit{l}_{(v_{i},v_{j})} \pmod{2} \\ &= \mathsf{lk}_{2}(\delta,\beta') + \mathit{l}_{(v_{i},v_{0})} + \mathit{l}_{(v_{0},v_{j})} + \mathit{l}_{(v_{i},v_{j})} \pmod{2} \\ &= \mathsf{lk}_{2}(\delta,\beta') + \mathsf{lk}_{2}(\Delta_{0ij};\beta') \pmod{2} \end{aligned}$$

Now, if we sum over all possible choices of where v_0 can go, i.e. summing over a particular equivalence class of $[(\alpha, \beta)]$, then we see that each $l_{(v_0,v_i)}$ get duplicated, and cancel.

- 4 周 ト 4 戸 ト 4 戸 ト

Idea of the Proof Preliminaries **Dealing with** $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Proof of Lemma 1, Cont.

Next, the $I_{(v_i,v_j)}$, once summed over every edge in δ , is simply $lk_2(\delta, \gamma)$, and once we sum over every in γ , we get another copy of $lk_2(\delta, \gamma)$. Thus,

$$\sum_{e} I_{e} = 2 \operatorname{lk}_{2}(\delta, \gamma) \pmod{2}$$

And

$$\sum_{(\alpha,\beta)\in\Gamma_n\backslash\Delta(v_0)} \mathsf{lk}_2(\alpha,\beta) = (n-1)\sum_{[(\alpha,\beta)]} \mathsf{lk}_2(\gamma,\delta) + 2\sum_{[(\alpha,\beta)]} \mathsf{lk}_2(\gamma,\delta)$$
$$= (n+1)\sum_{[(\alpha,\beta)]} \mathsf{lk}_2(\gamma,\delta) \pmod{2}$$

as desired.

< ロ > < 同 > < 三 > < 三 > <

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ **Preliminaries**, **Part 2** Dealing with $\Delta(v_0)$

Symmetry yrtemmyS

We've divided Γ_n into $\Gamma_n \setminus \Delta(v_0)$ and $\Delta(v_0)$. We're going to further divide $\Delta(v_0)$ into more subsets, using symmetry.

To this end, we introduce a family of functions that maps the vertices of the spatial embedding to the other vertices

$$\tau_k(v_i) = \begin{cases} v_i, & i \le k \\ v_{n-i} & k < i < n-k \\ v_i & i \ge n-k \end{cases}$$

This induces a corresponding map on the edges.

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ **Preliminaries**, **Part 2** Dealing with $\Delta(v_0)$

Wait, How was that Symmetry?

Our choice of embedding also plays into this. Each map can be described as keeping the first k and last k vertices in the same places, and reflecting the other vertices over the line through v_0 and the center of the *n*-gon.

In particular, τ_0 is literally the reflection about this line, and it preserves crossings (That are not incident v_0): let e, f be edges, with $e = (v_i, v_j)$, i < j and $f = (v_k, v_l)$, k < l.

If they intersect, then either i < k < j < l or k < i < l < j. So, n - l < n - j < n - k < n - i or n - k < n - l < n - i < n - k, which implies $\tau(e)$ and $\tau(f)$ intersect.

< ロ > < 同 > < 三 > < 三 >

 $\begin{array}{ll} \text{Idea of the Proof} \\ \text{Preliminaries} \\ \text{Dealing with } \Gamma_n \setminus \Delta(v_0) \\ \text{Preliminaries, Part 2} \\ \text{Dealing with } \Delta(v_0) \end{array}$

$\mathit{St}_{ au_0}$ and $\mathit{St}_{ au}$

Now, we can define the two following notions: $St_{\tau} \subset St_{\tau_0} \subset \Delta(v_0)$

Definition

 St_{τ_0} consists of elements $(\alpha, \beta) \in \Delta(v_0)$ so that $\tau_0(\alpha) = \alpha$ and $\tau_0(\beta) = \beta$

< ロ > < 同 > < 三 > < 三 >

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ **Preliminaries**, **Part 2** Dealing with $\Delta(v_0)$

Let $(\alpha, \beta) \in St_{\tau_0}$, and assume WLOG that α is the triangle containing v_0 . Since it is invariant over τ , the other two vertices of the triangle must be v_k and v_{n-k} . This means that α is automatically invariant over τ_k .

Definition

 $\mathit{St}_{ au}$ consists of elements $(lpha,eta)\in \mathit{St}_{ au_0}$ so that $au_k(eta)=eta$

< ロ > < 同 > < 回 > < 回 > .

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ **Preliminaries**, **Part 2** Dealing with $\Delta(v_0)$

・ロト ・四ト ・ヨト ・ヨト

э

 $\begin{array}{ll} \mbox{Idea of the Proof} \\ \mbox{Preliminaries} \\ \mbox{Dealing with } \Gamma_n \setminus \Delta(v_0) \\ \mbox{Preliminaries, Part 2} \\ \mbox{Dealing with } \Delta(v_0) \end{array}$

Dealing with $\Delta(v_0)$

Just as we divided Γ into $\Gamma \setminus \Delta(v_0)$ and $\Delta(v_0)$, our plan for dealing with $\Delta(v_0)$ will be similar: We're going to divide $\Delta(v_0)$ into

$$\Delta(v_0) \setminus St_{ au_0}, \quad St_{ au_0} \setminus St_{ au}, \quad ext{and} \ St_{ au}$$

Since we're calculating things (mod 2), the lack of symmetry in $\Delta(v_0) \setminus St_{\tau_0}$ and $St_{\tau_0} \setminus St_{\tau}$ will help us pair linking numbers, while the restrictiveness of St_{τ} will help us in its case.

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with $\Delta(v_0) \setminus St_{\tau_0}$

Since we are excluding St_{τ_0} , $(\alpha, \beta) \neq (\tau_0(\alpha), \tau_0(\beta))$. Since $lk_2(\alpha, \beta) = lk_2(\tau_0(\alpha), \tau_0(\beta))$, their sum is 0 (mod 2).

Thus

$$\sum_{(\alpha,\beta)\in\Delta(v_0)\setminus St_{\tau_0}}{\sf lk}_2(\alpha,\beta)=0\pmod{2}.$$

< ロ > < 同 > < 三 > < 三 >

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with $St_{\tau_0} \setminus St_{\tau}$

Since we are excluding St_{τ} , $\beta \neq \tau_k(\beta)$ Since $lk_2(\alpha, \beta) = lk_2(\tau_0(\alpha), \tau_0(\beta))$, their sum is 0 (mod 2).

Thus

$$\sum_{(\alpha,\beta)\in St_{\tau_0}\backslash St_{\tau}} {\sf lk}_2(\alpha,\beta) = 0 \pmod{2}.$$

< ロ > < 同 > < 三 > < 三 >

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with St_{τ}

Finally, we must sum up $lk_2(\alpha, \beta)$ for all (α, β) in St_{τ} . First, consider the case where α uses vertices v_0, v_1 , and v_{n-1} .

Clearly $lk_2(\alpha, \beta) = 0$ for any (α, β) in this case.

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with St_{τ}

Now, consider the other case. Then α uses vertices v_0 , v_k , and v_{n-k} with k > 1.

Suppose there are no vertices between v_k and v_{n-k} .

Clearly $lk_2(\alpha, \beta) = 0$ for any (α, β) in this case as well.

伺下 イヨト イヨト

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with St_{τ}

Now, suppose there are at least 2 vertices between v_k and v_{n-k} .

(日)

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with St_{τ}

There must be at least one edge connecting the lower vertices to the upper ones:

Due to τ_0 symmetry, we can add a second edge:

• • = • • = •

 $\begin{array}{ll} \mbox{Idea of the Proof} \\ \mbox{Preliminaries} \\ \mbox{Dealing with } \Gamma_n \setminus \Delta(v_0) \\ \mbox{Preliminaries, Part 2} \\ \mbox{Dealing with } \Delta(v_0) \end{array}$

Dealing with St_{τ}

Due to τ_k symmetry, we can add two more edges:

After this, we have already closed off β . Therefore this is the only (α, β) in St_{τ} that has 2 or more vertices between v_k and v_{n-k} . And since this (α, β) has $lk_2(\alpha, \beta) = 0$, we can also ignore this case.

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with St_{τ}

Finally, we have the case where there is exactly 1 vertex between v_k and v_{n-k} . For every (α, β) in this case, $lk_2(\alpha, \beta) = 1$.

Now the question is: For each *n*, how many (α, β) are there of this type?

< ロ > < 同 > < 三 > < 三 >

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with St_{τ}

Clearly there are zero such (α, β) for any odd *n*, since in order to have a single point at the bottom of the *n*-gon, *n* must be even. If n = 6, then there is exactly one such (α, β) , shown below:

 $\begin{array}{l} \text{Idea of the Proof} \\ \text{Preliminaries} \\ \text{Dealing with } \Gamma_n \setminus \Delta(v_0) \\ \text{Preliminaries, Part 2} \\ \text{Dealing with } \Delta(v_0) \end{array}$

Dealing with St_{τ}

Finally, if n > 6 is even, then after adding the two symmetric edges of β to the bottom vertex there will be at least 2 more vertices that still need to be added to β .

After these remaining vertices are all connected with a symmetric path, there are two ways to connect the two parts of β . This means that there are an even number of (α, β) in this case.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Idea of the Proof Preliminaries Dealing with $\Gamma_n \setminus \Delta(v_0)$ Preliminaries, Part 2 Dealing with $\Delta(v_0)$

Dealing with St_{τ}

Stephen Forest, Aditya Jambhale, James Longo Generalization of First Conway-Gordon Theorem

 $\begin{array}{ll} \mbox{Idea of the Proof} \\ \mbox{Preliminaries} \\ \mbox{Dealing with } \Gamma_n \setminus \Delta(v_0) \\ \mbox{Preliminaries, Part 2} \\ \mbox{Dealing with } \Delta(v_0) \end{array}$

Dealing with St_{τ}

To summarize, there are 4 cases for (α, β) in St_{τ} :

- α uses v_0 , v_1 , and v_{n-1}
- 0 vertices between v_k and v_{n-k}
- 2+ vertices between v_k and v_{n-k}
- Exactly 1 vertex between v_k and v_{n-k}

The sum of linking numbers mod 2 is always zero in the first 3 cases, and for the fourth case, the sum of linking numbers is 1 for n = 6 and 0 for all n > 6.

Land Ho! Eternity! Ashore At Last

Combining everything from above, for $n \ge 7$,

$$\begin{split} \Omega(\mathcal{K}_n) &= \sum_{(\alpha,\beta)\in\Gamma_n} \mathsf{lk}_2(\alpha,\beta) \pmod{2} \\ &= \sum_{(\alpha,\beta)\in\Gamma_n\setminus\Delta(v_0)} \mathsf{lk}_2(\alpha,\beta) + \sum_{(\alpha,\beta)\in\Delta(v_0)\setminus St_{\tau_0}} \mathsf{lk}_2(\alpha,\beta) \\ &+ \sum_{(\alpha,\beta)\in St_{\tau_0}\setminus St_{\tau}} \mathsf{lk}_2(\alpha,\beta) + \sum_{(\alpha,\beta)\in St_{\tau}} \mathsf{lk}_2(\alpha,\beta) \pmod{2} \\ &= (n+1)\sum_{[(\alpha,\beta)]} \mathsf{lk}_2(\gamma,\delta) + 0 + 0 + 0 \pmod{2} \\ &= (n+1)\Omega(\mathcal{K}_{n-1}) \pmod{2} \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

The End

$$\Omega(K_n) = (n+1)\Omega(K_{n-1}) \pmod{2}$$

For odd n, $n + 1 = 0 \pmod{2}$, so clearly $\Omega(K_n) = 0$. For all even n > 6, $\Omega(K_{n-1}) = 0$ since n - 1 is odd. Thus $\Omega(K_n) = 0$ for all n > 6, completing the proof.

< 同 > < 三 > < 三 >

-