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The Theorem

Theorem (The First Conway-Gordon Theorem)

Every Spatial Embedding of K6 contains a non-trivial link

Definition

A Spatial Embedding of a graph G is the image of a injective
continuous map f : G → R3
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Outline of Conway-Gordon Proof

Define the invariant Ω(G ) =
∑

lk(α, β) (mod 2), where the
sum is over all unordered pairs of Hamiltonian pairs of cycles
in G .

Show that Ω is invariant under isotopy and crossing changes.

Apply lemma that states that any spatial embedding can be
changed to any other using only isotopy and crossing changes.

Show that Ω = 1 for a specific embedding of K6.

Conclude that Ω = 1 for all spatial embeddings of K6, and
thus all embeddings of K6 contain a nontrivial Hamiltonian
link.
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Generalizing to Kn

Most of the proof does not rely on the graph being K6:

Define the invariant Ω(G ) =
∑

lk(α, β) (mod 2), where the
sum is over all unordered pairs of Hamiltonian pairs of cycles
in G .

Show that Ω is invariant under isotopy and crossing
changes.

Apply lemma that states that any spatial embedding can be
changed to any other using only isotopy and crossing changes.

Show that Ω = 1 for a specific embedding of Kn.
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The Results of the Generalization

The following theorems related to the generalization of the first
Conway-Gordon theorem were given by Kazakov and Korablev:

Theorem

For any two spatial embeddings G ′n,G
′′
n of Kn, n ≥ 6,

Ω(G ′n) = Ω(G ′′n ).

Theorem

Let Gn be a spatial embedding of Kn. Then Ω(Gn) = 1 if n = 6,
and Ω(Gn) = 0 if n > 6.

Stephen Forest, Aditya Jambhale, James Longo Generalization of First Conway-Gordon Theorem



Introduction
Proof of Theorem 1
Proof of Theorem 2

Putting it all together

Idea of Proof
The Proof

The First Theorem

Theorem

For any two spatial embeddings G ′n,G
′′
n of Kn, n ≥ 6,

Ω(G ′n) = Ω(G ′′n ).

Where
Ω(G ) =

∑
lk(α, β) (mod 2)

is the sum is over all unordered pairs of Hamiltonian pairs of cycles
in G .
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Idea of Proof

This proof relies on the same lemma used in the Conway-Gordon
proof:

Lemma

Let G ′ and G ′′ be spatial embeddings of the same graph. Then, G ′

can be transformed to G ′′ by a series of crossing changes and
isotopies

All that remains is to show that Ω is invariant under isotopies and
crossing changes.
Since Ω is the sum of linking numbers (which are invariant under
isotopy) clearly Ω is invariant under isotopy.
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The Proof

Once again, to show that Ω is unaffected over crossing changes.
There are three cases, but not really:

1 The crossing is with and edge and itself

2 The crossing is between two adjacent edges

3 The crossing is between two-nonadjacent edges

However, the first two cases can be discarded, as any such crossing
change has no effect on any linking number, and thus has no effect
on Ω
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The Proof, Cont.

Thus, we need only consider when an edge crosses with another,
non-adjacent edge, call them A and B. As before, for a given link
L = (L1, L2), A ⊂ L1 and B ⊂ L2, it’s linking number changes by 1
after the crossing change. So,

Ω = Ω′ +
∑

(A,B)⊂(L1,L2)

1 (mod 2)

And we need noly show that the number of such crossings is even.
To this end, for a given link (L1, L2), break it down as follows,
where a1, a2 are the vertices of A, and b1, b2 are the vertices of B

L1 = a1 7→ a2 7→ v1 7→ · · · 7→ vn 7→ a1

L2 = b1 7→ b2 7→ w1 7→ · · · 7→ wm 7→ b1
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The Great Finale

L1 = a1 7→ a2 7→ v1 7→ · · · 7→ vn 7→ a1

L2 = b1 7→ b2 7→ w1 7→ · · · 7→ wm 7→ b1

From this description of L1 and L2, define a link

N1 = a1 7→ a2 7→ w1 7→ · · · 7→ wn 7→ a1

N2 = b1 7→ b2 7→ v1 7→ · · · 7→ vm 7→ b1

This defines a map of order two between links, and because
(N1,N2) 6= (L1, L2), it is a pairing between the set of links so that
A ⊂ L1,B ⊂ L2. Thus, Ω is invariant over any spatial embedding
of Kn
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An Illustrated Diagram
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Idea of the Proof

Theorem

Let Gn be a spatial embedding of Kn. Then Ω(Gn) = 1 if n = 6,
and Ω(Gn) = 0 if n > 6.

Because of theorem one, we now know that Ω is independent of
spatial embedding, so we need only calculate it for a specific
embedding given n. To this end, we chose the following
embedding:

1 Label the vertices of Kn v0, v1, v2, . . . vn−1

2 Place them in R3 so that they project down to a regular n-gon

3 Fix v0, then place the vertex vi i units lower than v0 in the
z-direction
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Chosen Embedding example

Projected down to R2, the embedding looks something like this:

In general, two edges, call them e = (vi , vj) and f = (vk , vl), i < j ,
k < l intersect iff either l < j < k < i or j < l < i < k .
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Introducing Destabilization

For ease of reference, call the set of (Unordered) disjoint pairs of
Hamiltonian Cycles in Kn Γn. We’re trying to compute a huge
sum, being Ω, so the general strategy will be to partition Γ in to
easy to compute chunks.

Definition

∆(v0) is the set of all disjoint Hamiltonian cycles (α, β) so that
one of the cycles is a ”triangle” containing v0.

Destabilization is going to be defined of Γn \∆(v0).
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Destabilization

Let (α, β) ∈ Γn \∆(v0), and WLOG, assume v0 ∈ α. Then, α has
at least four vertices, two of which are neighboring v0, call them vi
and vj . The destabilization of this pair results in a new pair
(α′, β), where the edges (vi , v0) and (v0, vj) are removed and
replaced with (vi , vj)

Notice we are not left with a something in Γn. It is however,
within Γn−1 when considering Kn \ {v0}.
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Dealing with Γn \∆(v0)

Lemma

Let Gn ⊂ R3 be a spatial complete graph with n ≥ 6 vertices. Then∑
(α,β)∈Γn\∆(v0)

lk2(α, β) ≡ (n + 1)
∑

[(α,β)]

lk2(γ, δ) (mod 2),

Where the last sum is taken over all equivalence classes of
Hamiltonian pairs of cycles in Γn \∆(v0) and the pair (γ, δ) is
obtained by destabilization of (α, β) along the vertex v0.
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Proof of Lemma 1

Let (δ, γ) be the image of some destabilization along the vertex v0.
Any element that reduces to it (i.e. elements of the set [(α, β)] ),
can be obtained as follows:

There are n − 1 places to ”add back” the vertex v0. For any edge
e ∈ (δ, γ), with end points vi and vj , we can replace it with the
two edges (vi , v0) and (v0, vj).

The question is now how lk2(α′, β′) and lk2(δ, γ) relate, where
(α′, β′) ∈ [(α, β)]
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Proof of Lemma 1, Cont.

With out loss of generality, assume that v0 ∈ α′, and that the
vertex v0 was added to δ. Then, lk2(α′, β′) is equal to the number
of times α′ crosses over β′. This can be broken down into the sum
over all the edges, i.e.

lk2(α′, β′) =
∑
e∈α′

le (mod 2)

lk2(δ, γ) =
∑
e∈δ

le (mod 2)

Where le stands for the number of crossings between e and β′.
(Note that β′ = γ). Now, the only difference in in the summation
are what edges are being summed over. δ and α′ differ only by a
triangle with v0, vi , and vj as the vertices.

Stephen Forest, Aditya Jambhale, James Longo Generalization of First Conway-Gordon Theorem



Introduction
Proof of Theorem 1
Proof of Theorem 2

Putting it all together

Idea of the Proof
Preliminaries
Dealing with Γn \ ∆(v0)
Preliminaries, Part 2
Dealing with ∆(v0)

Proof of Lemma 1, Cont.

From the remarks on the previous slide,

lk2(α′, β′) = lk2(δ, β′) + l(vi ,v0) + l(v0,vj ) − l(vi ,vj ) (mod 2)

= lk2(δ, β′) + l(vi ,v0) + l(v0,vj ) + l(vi ,vj ) (mod 2)

= lk2(δ, β′) + lk2(∆0ij ;β
′) (mod 2)

Now, if we sum over all possible choices of where v0 can go, i.e.
summing over a particular equivalence class of [(α, β)], then we see
that each l(v0,vi ) get duplicated, and cancel.
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Proof of Lemma 1, Cont.

Next, the l(vi ,vj ), once summed over every edge in δ, is simply
lk2(δ, γ), and once we sum over every in γ, we get another copy of
lk2(δ, γ). Thus, ∑

e

le = 2 lk2(δ, γ) (mod 2)

And ∑
(α,β)∈Γn\∆(v0)

lk2(α, β) = (n − 1)
∑

[(α,β)]

lk2(γ, δ) + 2
∑

[(α,β)]

lk2(γ, δ)

= (n + 1)
∑

[(α,β)]

lk2(γ, δ) (mod 2)

as desired.
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Symmetry yrtemmyS

We’ve divided Γn into Γn \∆(v0) and ∆(v0). We’re going to
further divide ∆(v0) into more subsets, using symmetry.

To this end, we introduce a family of functions that maps the
vertices of the spatial embedding to the other vertices

τk(vi ) =


vi , i ≤ k

vn−i k < i < n − k

vi i ≥ n − k

This induces a corresponding map on the edges.
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Wait, How was that Symmetry?

Our choice of embedding also plays into this. Each map can be
described as keeping the first k and last k vertices in the same
places, and reflecting the other vertices over the line through v0

and the center of the n-gon.
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In particular, τ0 is literally the reflection about this line, and it
preserves crossings (That are not incident v0): let e, f be edges,
with e = (vi , vj), i < j and f = (vk , vl), k < l .

If they intersect, then either i < k < j < l or k < i < l < j . So,
n − l < n − j < n − k < n − i or n − k < n − l < n − i < n − k,
which implies τ(e) and τ(f ) intersect.
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Stτ0
and Stτ

Now, we can define the two following notions: Stτ ⊂ Stτ0 ⊂ ∆(v0)

Definition

Stτ0 consists of elements (α, β) ∈ ∆(v0) so that τ0(α) = α and
τ0(β) = β
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Stτ

Let (α, β) ∈ Stτ0 , and assume WLOG that α is the triangle
containing v0. Since it is invariant over τ , the other two vertices of
the triangle must be vk and vn−k . This means that α is
automatically invariant over τk .

Definition

Stτ consists of elements (α, β) ∈ Stτ0 so that τk(β) = β

Stephen Forest, Aditya Jambhale, James Longo Generalization of First Conway-Gordon Theorem



Introduction
Proof of Theorem 1
Proof of Theorem 2

Putting it all together

Idea of the Proof
Preliminaries
Dealing with Γn \ ∆(v0)
Preliminaries, Part 2
Dealing with ∆(v0)

Stτ
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Dealing with ∆(v0)

Just as we divided Γ into Γ \∆(v0) and ∆(v0), our plan for dealing
with ∆(v0) will be similar: We’re going to divide ∆(v0) into

∆(v0) \ Stτ0 , Stτ0 \ Stτ , and Stτ

Since we’re calculating things (mod 2), the lack of symmetry in
∆(v0) \ Stτ0 and Stτ0 \ Stτ will help us pair linking numbers, while
the restrictiveness of Stτ will help us in its case.
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Dealing with ∆(v0) \ Stτ0

Since we are excluding Stτ0 , (α, β) 6= (τ0(α), τ0(β)).
Since lk2(α, β) = lk2(τ0(α), τ0(β)), their sum is 0 (mod 2).

Thus ∑
(α,β)∈∆(v0)\Stτ0

lk2(α, β) = 0 (mod 2).
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Dealing with Stτ0
\ Stτ

Since we are excluding Stτ , β 6= τk(β)
Since lk2(α, β) = lk2(τ0(α), τ0(β)), their sum is 0 (mod 2).

Thus ∑
(α,β)∈Stτ0\Stτ

lk2(α, β) = 0 (mod 2).
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Dealing with Stτ

Finally, we must sum up lk2(α, β) for all (α, β) in Stτ .
First, consider the case where α uses vertices v0, v1, and vn−1.

Clearly lk2(α, β) = 0 for any (α, β) in this case.
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Dealing with Stτ

Now, consider the other case. Then α uses vertices v0, vk , and
vn−k with k > 1.
Suppose there are no vertices between vk and vn−k .

Clearly lk2(α, β) = 0 for any (α, β) in this case as well.
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Dealing with Stτ

Now, suppose there are at least 2 vertices between vk and vn−k .
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Dealing with Stτ

There must be at least one edge connecting the lower vertices to
the upper ones:

Due to τ0 symmetry, we can add a second edge:
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Dealing with Stτ

Due to τk symmetry, we can add two more edges:

After this, we have already closed off β. Therefore this is the only
(α, β) in Stτ that has 2 or more vertices between vk and vn−k . And
since this (α, β) has lk2(α, β) = 0, we can also ignore this case.
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Dealing with Stτ

Finally, we have the case where there is exactly 1 vertex between
vk and vn−k . For every (α, β) in this case, lk2(α, β) = 1.

Now the question is: For each n, how many (α, β) are there of this
type?
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Dealing with Stτ

Clearly there are zero such (α, β) for any odd n, since in order to
have a single point at the bottom of the n-gon, n must be even.

If n = 6, then there is exactly one such (α, β), shown below:
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Dealing with Stτ

Finally, if n > 6 is even, then after adding the two symmetric edges
of β to the bottom vertex there will be at least 2 more vertices
that still need to be added to β.

After these remaining vertices are all connected with a symmetric
path, there are two ways to connect the two parts of β.
This means that there are an even number of (α, β) in this case.
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Dealing with Stτ
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Dealing with Stτ

To summarize, there are 4 cases for (α, β) in Stτ :

α uses v0, v1, and vn−1

0 vertices between vk and vn−k

2+ vertices between vk and vn−k

Exactly 1 vertex between vk and vn−k

The sum of linking numbers mod 2 is always zero in the first 3
cases, and for the fourth case, the sum of linking numbers is 1 for
n = 6 and 0 for all n > 6.
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Land Ho! Eternity! Ashore At Last

Combining everything from above, for n ≥ 7,

Ω(Kn) =
∑

(α,β)∈Γn

lk2(α, β) (mod 2)

=
∑

(α,β)∈Γn\∆(v0)

lk2(α, β) +
∑

(α,β)∈∆(v0)\Stτ0

lk2(α, β)

+
∑

(α,β)∈Stτ0\Stτ

lk2(α, β) +
∑

(α,β)∈Stτ

lk2(α, β) (mod 2)

= (n + 1)
∑

[(α,β)]

lk2(γ, δ) + 0 + 0 + 0 (mod 2)

= (n + 1)Ω(Kn−1) (mod 2)
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The End

Ω(Kn) = (n + 1)Ω(Kn−1) (mod 2)

For odd n, n + 1 = 0 (mod 2), so clearly Ω(Kn) = 0.

For all even n > 6, Ω(Kn−1) = 0 since n − 1 is odd.

Thus Ω(Kn) = 0 for all n > 6, completing the proof.
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